SYNTHESIS AND PROPERTIES OF BUTATRIENES CONTAINING A BISDEHYDRO[13]ANNULENE SYSTEM AS TERMINAL GROUPS

Masahiko Iyoda,* Shigeyoshi Tanake, Kazuhiko Nishioka, and Masaji Oda* *Depptment of Chemistry, Faculty of Science, Osaka* University, Toyonaku, Osaka 560, *Japan*

Summary: The compounds bearing a butatriene linkage between bisdehydro[13]annulene and elec**tron donating and withdrawing systems have been synthesized. The contribution of a dipolar structure in these compounds is discussed on the basis of the spectral data.**

A cyclic-conjugated system containing a butatriene linkage between two unsaturated odd-<code>membered</code> rings are generally described as the formula (]). In the case of m = n, there can be **no contribution of the dipolar structure in these compounds. On the other hand, in the case** of $m \neq n$, the contribution of the dipolar structure (2) is expected in the ground state. It <code>might</code> be expected that the compound (λ) shows the more contribution of the dipolar structure λ λ **than fulvalenes which are mostly typical polyenes with rather strongly localized carbon-carbon** double bonds.²⁾ In this point of view, several compounds of the general formula (1) have been **reported.3) However, relatively little is known about the charge-separation or polarization of the cross-conjugated system having Csp'-Csp-Csp-Csp' linkage.**

The fulvalene-like system (2) containing a bisdehydro[13]annulene moiety is of interest because the [13]annulene moiety might behave like a negative or a positive end, $i.e.,\ A \leftrightarrow \lambda \leftrightarrow \lambda$ $5.$ When a cyclic system joined at opposite end in 3 tends to show a cationic form (i.e., n = $2N+1$), the contribution of the structure (4) might be expected. On the other hand, when a small or a medium ring in 2 tends to show an anionic form (i.e., n = 2N), the contribution of **,\$_ might be expected. It is known that 'H NMR chemical shifts of inner and outer protons of a** macrocyclic annulene reflect the tropicity,⁴⁾ and the ¹H NMR chemical shifts of the bisdehydro-[13]annulenone (i.e., a paratropic system) and the bisdehydro[13]annulenyl anion (i.e., a dia**tropic system) have been reported.5) Therefore, the contribution of the dipolar structure in 2 can be detected easily by comparison with the 'H NMR chemical shifts of the paratropic or diatropic [13]annulene. We now wish to report the synthesis of the fulvalene-like butatrienes** $(6 \sim$ JJ) and the spectroscopic detection of the polar structure.

The synthesis of $\boldsymbol{\mathfrak{h}}^{6}$ was carried out by the reaction sequence shown in Scheme 1. The Wittig-Horner reaction of $\lambda \lambda^{7}$ with the carbanion derived from the ketophosphonate $(\lambda \lambda)^{8}$ afforded the bis(trimethylsilyl)ketone (14, yellow cryst., mp 110.5~112.0°C, 75%).⁹⁾ The reaction of 14 with an excess of acetylenedimagnesium bromide in THF gave a mixture of 15 and 16, **which were separated by column chromatography on alumina (W, colorless tryst., mp 101.5~~103.0** °C, 45%; <u>16,</u> pale yellow amorphous solid, 32%). Reaction of 16 with NaOH in aq. ethanol gave the diol (χ , pale yellow amorphous solid, 90%), which was then oxidized with copper(II) acet**ate in pyridine-methanol-ether under high dilution conditions to give two bicyclic glycols** $(18,$ colorless solid, 5%; $18,$ colorless fine cryst., dp > 200°C, 15%). Treatment of 18 with tin(II) chloride-hydrogen chloride in ether afforded the butatriene (6, dark violet cryst., dp **> 150°C, 56%).**

The synthesis of the butatrienes $(\mathcal{J} \sim \mathcal{J})$ was accomplished by the reaction sequence shown in Scheme 2. The ethynyl alcohols (21g and 21g) obtained by the reaction of the ketones (20g **and m) with lithium acetylide were treated with BuLi in THF to give the corresponding lithio** derivatives. The reaction of the lithio derivatives with the bisdehydro[13]annulenone $(\frac{2}{2})^{10}$ yielded the diols (23a, colorless cryst., mp 176.5~178.0°C, 38%) and (23b, colorless fine cryst., mp 118.5~123.0°C, 36%), respectively. Treatment of these diols (23a and 23b) with tin(II) chloride-hydrogen chloride in ether afforded the corresponding butatrienes (7, reddish brown cryst., dp > 200°C, 94%) and (β , deep bluish violet cryst., 80%), respectively.

For the synthesis of the butatrienes (2, λ Q and λ), the ethynyl alcohols (λ)_{*C*}, λ)_{*d*} and ζ le) derived from the ketones (ζ O_C, ζ O_C, and ζ O_C) were firstly treated with EtMgBr to give the corresponding Grignard derivatives, which were then allowed to react with 22 to give the diols **c&Z&,, colorless tryst., dp > 210X, 51%), (,Q,Q, colorless fine tryst., mp 134.5L135.0°C, 24.5** %), and (23e, pale yellow fine cryst., mp 129.5~131.5°C, 43%), respectively. The diols (23e, 2,3d and 2,3e) were converted into the butatrienes (2, 10 and 11) under similar reaction conditions used for ζ and ζ (ζ , deep reddish violet cryst., dp > 185°C, 74%; χ _{ζ}, deep reddish violet **tryst., dp > 19O"C, 81%; ,JJ,, reddish brown tryst., dp > 22O"C, 58%).**

The electronic spectra of the butatrienes ($\beta \sim$ JJ) are shown in Figure 1 and the ¹H NMR parameters (chemical shifts in τ -values) of $\beta \sim \frac{1}{2}$ are summarized in Table 1 together with those of the bisdehydro[13]annulenone (22). The electronic spectra of these butatrienes show **two intense absorption maxima (ea. 280 and 490 % 550 nm). The longer absorption bands are** assignable to π \rightarrow π * transitions on the basis of the results of Runge.¹¹⁾ The shorter absorption bands may be associated with $\delta \rightarrow \delta^*$ transitions, because the positions of the bands are **little affected by substitution.l')**

The difference in the chemical shifts between the outer and inner protons $(\tau_0 - \tau_i)$ can be regarded as an approximate measure of tropicity. As shown in Table 1, the At-values increase in the order $2 < 2 < \zeta < \zeta \leq 12 < \zeta$, The butatriene (ζ) should show no contribution of the dipolar structure, because 6 bears two equivalent bisdehydro[13]annulene parts as the terminal groups. Therefore, the [13]annulene moiety in 11 may be slightly positive and consequently paratropic, although the paratropicity is weaker than that of the [13]annulenone (22). On the contrary, the [13]annulene moiety in β , which shows smaller $\Delta \tau$ -values than that in β , **may be slightly negative and seems diatropic (the inner protons in an atropic [13]annulene** $(e.g.,\ \text{g})^{12}$ were observed at lower field relative to the outer protons, presumably owing to **a superposition of the anisotropic effect and the steric compression between the inner** protons). The paratropicity observed in J , reflects the facility of the charge-separation in **the butatriene linkage as compared with theethylenelinkage (e.g., the outer and inner protons** of ζ_{25}^{13} were observed at τ 3.15 and 2.08, respectively: $\Delta \tau$ = 1.07).

 $(2: \cdots \cdots \quad \& \cdots$ $\cdots \quad \& \qquad \qquad$ $\qquad \q$ Table 1. The ¹H NMR Parameters of the Butatrienes (6 \sim 11) and the Bisdehydro[13]annulenone (22).

In order to investigate in detail the contribution of the dipolar structure, the IR **and "C NMR spectra have been examined (Table 2). The** IR **absorption band of butatriene portion is very useful for identifying and detecting the butatriene functional group. This absorption** band in $7 \sim$ 11 appears around 2020 cm⁻¹ so that the contribution of acetylene form (IR, 2190 \sim **2260 cm-') cannot be detected in the** IR **spectra. The 13C NMR chemical shifts of the butatri**ene parts in $\mathfrak{g}\sim\mathfrak{g}$ may suggest a slight charge-separation, because the chemical shifts of the sp^2 -carbon (C₄) are shifted to lower field in the order $g < g = 7 < g < JQ < J$. This order **corresponds to that of the AT-values andrevealstheincreaseof negative charge. The chemical** shifts of the sp -carbons (C₂ and C₃) in $\bar{\chi} \sim J_{\rm tot}$, however, were observed in the region of about **126 to 157 ppm, suggesting hardly detectable contribution of the acetylenic dipolar structure** (27) (¹³C NMR chemical shifts of acetylenes are δ 65 \sim 90 ppm). The slight charge-separation may be also due to the contribution of the dipolar structure (28 and 29), because the chemical shifts of C₂ in $7 \sim 11$ are distinct from those of C₃. Consequently, the slight charge-separa**tion observed in the butatrienes (1 s &l) may be attributable to some participation of the** dipolar structure (30).

a) Laser Raman spectrum. b) TMS as the internal standard.

References and Notes

-)) Experimental evidence and theoretical treatments have suggested that rotational barriers of butatrienes are
much smaller than those of ethylenes. Therefore, the transition state of the rotation, i.e., diradical or
dipo **Chemistry of Ketenes. Allenes, and Related Compounds, Part 1". ed. by S. Patai, John Wiley (1980).**
-
- 2) For a review see, a) E. D. Bergmann, *Chem. Rev.,* 68, 41 (1968); b) P. J. Garrat, "Aromaticity", Mc Grow Hill,
- London (1971); c) F. Pietra, *Chem. Rev., 1*3, 293 (1973).
3) a) H. Fischer and H. Fischer, *Chem. Rev.*, *Appt. Chem., 54,* **1059 (1982).**
- **4)** Cf., **M. Nakagawa, Chapter 15 in "The Chemistry of the Carbon-Carbon Triple Bond, Part 2", ed. by S. Patai. John Wiley (1978).**
- 5) a) P. D. Howes, E. LeGoff, and F. Sondheimer, *Tetrahedron Lett.*, 3691 (1972); b) E. LeGoff and F. Sondheimer,
A*ngew. Chem.*, <u>84</u>, 996 (1972); c) T. M. Cresp, J. Ojima, and F. Sondheimer, *J. Org. Chem.*, <u>42</u>, 2130
- **6) The tetramethvl derivative has been synthesized in a different manner, L. Lombard0 and F. Sondheimer,** Tetm*hedron L&t.,-* **3631 (1976).**
-
- 7) M. Iyoda and M. Nakagawa, *Tetrahedron Lett.*, 4743 (1973).
8) M. Nakagawa, M. Iyoda, T. Azuma, F. Ogura, and S. Akiyama, Abstracts of 12th Symposium on Nonbenzenoid Aro-
matic Compounds, p 125, Matsumoto, Japan (1979).
- **All new crystalline compounds described in this paper gave** IR, **NMR, and mass spectral data consistent with** 9) **the assioned structures and satisfactory elemental analyses were obtained.**
- 10) **M. Nakagawa, M. Iyoda, and T. Kashitani, 30th National Meeting of the Chemical Society of Japan, Osaka, Apr. 1974, Abstr. No. 3932.**
-
- 11) 12) W. Runge, "Progress in Physical Organic Chemistry", Vol. 13, p 315 ed. by R. W. Tart, Interscience (1961).
S. Kuroda, K. Kitatani, and J. Ojima, *Tetrahedron Lett*., <u>23</u>, 2657 (1982); also see, T. Asao, M. Morita, J.
Ojim *23. 2657* **(1982); also see. T. Asao, M. Morita. J.**
- **13) P. D. Jowes and F, Sondheimer, J. org.** *Chwn., 43,* **2158 (1978).**
	- (Received in Japan 29 March 1983)